e.

eo
oftware

\ ,
AN 4
o
Software development O ¢
myths that block

®
your career V 4 \

Piotr Horzycki
peterdev.pl

¢

N

Focus on the
right thing

The 80/20 rule (Pareto principle)

Become a problem solver, not maker!

Sophisticated architecture
+

Hype-Driven Development

@ Hype-Driven Development

(7]

MPLEMENT(ALINTHEIDESIGN|PATTERN

@ Hype-Driven Development

Not every system requires:

ORM

CQRS

Hexagonal Architecture
Microservices

Machine Learning

Marek Kirejczyk N ; . 5 C
':,' Nov 23,2016 - 9minread - @ Listen

Hype Driven Development

https://blog.daftcode.pl/hype-driven-development-3469fc2e9b22?gi=a52a6e685546

@ Key benefits

e You can be the voice of reason

Avoiding sophisticated architecture

@ Key benefits

e You can be the voice of reason

e Match solutions to problems

Avoiding sophisticated architecture

@ Key benefits

e You can be the voice of reason
e Match solutions to problems

e [aster development

Avoiding sophisticated architecture

@ Key benefits

e You can be the voice of reason
e Match solutions to problems

e [aster development

e Save project from missing deadlines and failure

Avoiding sophisticated architecture

@ Key benefits

e You can be the voice of reason

e Match solutions to problems

e [aster development

e Save project from missing deadlines and failure

e More time for important things

Avoiding sophisticated architecture

@ Key benefits

e You can be the voice of reason

e Match solutions to problems

e [aster development

e Save project from missing deadlines and failure
e More time for important things

e Reduce costs

Avoiding sophisticated architecture

@ Key benefits

e You can be the voice of reason

e Match solutions to problems

e [aster development

e Save project from missing deadlines and failure
e More time for important things

e Reduce costs

e FEasier team building

Avoiding sophisticated architecture

1009% ...

@ Know your metrics

Line coverage is a tool to find untested code.

But it's not enough to determine the quality of tests.

' 4

@ Know your metrics

What's the coverage?

Ul
Tests On a scale from 1to 10,

how much do we trust
/ Service Tests\ these tests?

/ Unit Tests \

@ Know your metrics

if (something) ({ 100% line coverage
doThis();
) 50% branch
coverage

doOtherThing() ;

https://emojipedia.org/person-shrugging/

@ Mutation testing

122 /[Verify for a ".." component at next iter
1238 if ((newcomponents.get(i)).length() > 0 ¢
124 {
125 newcomponents.remove(i);
126 newcomponents.remove(i);
k* 1271 1 =0=2
\J/) 1281 if (i < -1)
129 {
130 i=-1;
131 }
132 }
133 }

Mutation testing tells you how precise your tests are

@ Make refactoring easier

Too strict unit tests limit the possibility of refactoring.

Make

mock1 Writ ﬁ The Test
.method('doThis") fite 2 Pass

.expect (times(3)) Failing Test
.withArguments(...);

mock?2
.method('doThat')
.expect(times(2))
.withArguments(...);

Refactor

@ Better testing strategy: Key benefits

e Improved quality
e Lessbugs
e More stability

e FEasier refactoring

Better testing strategy

Rewrite everything?!

e Pros and cons of rewrites

Old system = old bugs

New system = new bugs

Rewrite might be necessary (like termination of Adobe Flash)

..but usually it's not

e Pros and cons of rewrites

"The project management was not
pleased. (...) two programmers had
spent two days doing work that added
nothing to the many features the
system had to deliver in a few months'
time. The old code had worked just fine.
Yes, the design was a bit more "pure"
Martin Fowler [and a bit more "clean." But the project
Kentedk” / had to ship code that worked, not code
| m) A 88 that would please an academic. (...)

Six months later, the project failed."

SEcoND EDITION |

@ Strategies for legacy code

e Writing tests

@ Strategies for legacy code

e \Writing tests
e Refactoring step by step

@ Strategies for legacy code

e \Writing tests
e Refactoring step by step

e Event Storming

@ Strategies for legacy code

e \Writing tests

e Refactoring step by step
e FEvent Storming

e Facade

e Strangler Pattern

e Anti-Corruption Layer

@ Strategies for legacy code

Action Cost Expected
benefit

Rewrite the shopping cart XL M

Refactor user registration L L

Optimize SQL for listing products M L

@ Strategies for legacy code

Action Cost Expected
benefit

Rewrite the shopping cart XL M

Refactor user registration L L

Optimize SQL for listing products M L

@ Refactoring strategy: Key benefits

e Save project from missing deadlines and failure
e Preserve the existing behavior of a system

e More time for important things

@ Refactoring strategy: Key benefits

e Save project from missing deadlines and failure
e Preserve the existing behavior of a system

e More time for important things

e Small step improvements are visible quickly

e Dopamine shots, avoid burnout

e Small gains accrued give big wins

We must have Scrum...?

@ Nervous Scrum?

Sprints can make people stressed because they believe that:

e They must do all the planned work
e They must not change the scope of the sprint

Wrong!

@ “Fixing” Scrum

New tools for Retrospectives
More color post-its
Better estimates

More bureaucracy

@ Scrum values: start from there!
Commitment
Focus
Openness
Respect

Courage

https://scrumguides.org/scrum-guide.html#scrum-values

@ Five dysfunctions of a team

Slatis Inattention to results
& Ego

Invulnerability Absence of trust

https://www.strategypunk.com/leadership-5-dysfunctions-of-a-team-powerpoint-template/

@ Improving team performance

e Jeam Canvas
e |lonl
e “How-to" for other teams

e |nvite other teams for your Sprint Review

@ Improving team performance

e TJeam Canvas

e lonli

e “How-to"” for other teams

e |nvite other teams for your Sprint Review

e Conway's Law

@ Improving team performance

e TJeam Canvas

e lonli

e “How-to"” for other teams

e |nvite other teams for your Sprint Review
e Conway's Law

e Extreme Ownership

@ Improving team performance

e TJeam Canvas

e lonli

e “How-to"” for other teams

e |nvite other teams for your Sprint Review
e Conway's Law

e Extreme Ownership

e Scrum alternatives (Kanban, Fast Agile)

@ Key benefits

e Improve the company culture
e Reduce stress

e Align around common goals
e Practice soft skills

e Better systems architecture

Meetings are a waste of time...?

¢

“Ok, let’s get back to work”

¢

“Ok, let’s get back to work”

“This could have been an email”

Development is
teamwork

You need to work together,
but also respect each other's time

@ Improving meetings

Switch Daily Scrum, 9:45am

Krakéw Team Day
9am - 5pm

Switch Daily Scrum, 9:45am

Embedded flow for Verify - Event
Storming
10:15am - Tpm

W Switch Daily Scrum, 9:45am
V V (
Daily, 10:15am Front-end testing AIS - VoIt Verify D
Embedded i jakie$ smieci, 10:30am 10:15 - 11am
Verify Sprint Planning
&3 Data optimization - Payment 11 - 11:45am

feature

[PPK - Biweekly Catchup, 12pm

11:15am - 12:45pm

Monthly OKR checkpoint

[PPK - Bug Bounty, 12:30pm

12 - 12:50pm

Coding standards, thinking]
about future
1-3pm

1

J
Verify demo

Pix - fuzebox con|
2 - 2:45pm

one on one Dokumentacja endpointéw
1 45pm 1—-2pm

(CAIS - VoIt Verify Daily, T0:75am

Switch Daily Scrum, 9:45am

Verify - Retro
10:30 - 11:30am

Fast Agile
1:15 - 2:45pm

__(Pix - daily, 2:45pm

) (Pix-daily, 2245pm) (Pix-daily, Z45pm)

Verify pre-prod, 3:30pm

#ShitStormSurfers
3 - 3:45pm

weekly - team lea

((Pix -daily, Z45pm

standards,
thinking about

future
10am - 12pm

Focus Time
12:45 - 3pm

Progress Talks - cases to discuss
1:30 - 2:30pm

Verify pre-prod 0.2
3 - 4pm

@ Improving meetings

e A meeting should have an agenda
e Do we need everyone on this call?

e Don't be afraid to reject a meeting

@ Improving meetings

e A meeting should have an agenda
e Do we need everyone on this call?
e Don't be afraid to reject a meeting
e Moderation, getting to the point

e Timeboxing

e Focus (avoid distraction)

@ Improving meetings

e A meeting should have an agenda
e Do we need everyone on this call?
e Don't be afraid to reject a meeting
e Moderation, getting to the point

e Timeboxing

e Focus (avoid distraction)

e Meeting notes, action points

e Collaboration tools

@ Key benefits

e Improve the company culture
e Reduce stress
e Better productivity

e Better alignment, more commitment

Improving meetings

Ticking all the boxes

@ Average IT job offer

e Years of experience
e AWS, BDD, DDD, TDD, ABC, XYZ
e Tons of fancy keywords

e Gimmicks

Result: Impostor syndrome

¢

As a candidate As a recruiter

You don't have You can't expect people
to tick all the boxes to tick all the boxes

Philosophers team

Socrates scores, got a beautiful cfou from
Archimedes. The Germans are disputing it."

Kant, via the categorical imperstive, ‘
is holding that, ontologically, It oxms il
only in the imagination.” = And Marx is clalming It wes offside.:

@ Diverse team

Everyone's awesome at something different:

e Architecture
e Design

e Management
e Performance
e Security

e Scalability

e Testing

@ Diverse team

© Luca Rossi ° 1. eoeo

| help engineering leaders build great teams with Refactoring.club

;\ °1t-®

Most Fast-growing startups that struggle at hiring would be just fine by focusing
on 1) hiring mostly junior devs and 2) training them well.

Cheaper + faster + less competition + great results in the long run.

@ Gabriele Proni * 2. 1tydz. (edytowano) =+»

Unlocking the potential of remote working through systems and proc...

Since | implemented a senior: junior ratio of 1: 3, | doubled the team's
productivity.

@ Key benefits

e Fight the impostor syndrome

e Build strong, cross-functional teams
e Better software quality

e Faster onboarding

e Reduce costs

1,

Become a real pro
by focusing on the right things)

Thank you!

inll fiv Qe

