
Software development
myths that block
your career

Piotr Horzycki
peterdev.pl

Focus on the
right thing

The 80/20 rule (Pareto principle)

Become a problem solver, not maker!

Sophisticated architecture
+

Hype-Driven Development

Hype-Driven Development

Not every system requires:

● ORM
● CQRS
● Hexagonal Architecture
● Microservices
● Machine Learning
● …

Hype-Driven Development

https://blog.daftcode.pl/hype-driven-development-3469fc2e9b22?gi=a52a6e685546

● You can be the voice of reason

Avoiding sophisticated architecture

Key benefits

● You can be the voice of reason

● Match solutions to problems

Avoiding sophisticated architecture

Key benefits

● You can be the voice of reason

● Match solutions to problems

● Faster development

Avoiding sophisticated architecture

Key benefits

● You can be the voice of reason

● Match solutions to problems

● Faster development

● Save project from missing deadlines and failure

Avoiding sophisticated architecture

Key benefits

● You can be the voice of reason

● Match solutions to problems

● Faster development

● Save project from missing deadlines and failure

● More time for important things

Avoiding sophisticated architecture

Key benefits

● You can be the voice of reason

● Match solutions to problems

● Faster development

● Save project from missing deadlines and failure

● More time for important things

● Reduce costs

Avoiding sophisticated architecture

Key benefits

● You can be the voice of reason

● Match solutions to problems

● Faster development

● Save project from missing deadlines and failure

● More time for important things

● Reduce costs

● Easier team building

Avoiding sophisticated architecture

Key benefits

100% code
coverage

Line coverage is a tool to find untested code.

But it’s not enough to determine the quality of tests.

Know your metrics

Know your metrics

What’s the coverage?

On a scale from 1 to 10,
how much do we trust
these tests?

if (something) {
 doThis();
}

doOtherThing();

Know your metrics

100% line coverage

50% branch
coverage

🤷

https://emojipedia.org/person-shrugging/

Mutation testing tells you how precise your tests are

Mutation testing

Too strict unit tests limit the possibility of refactoring.

mock1
 .method('doThis')
 .expect(times(3))
 .withArguments(...);

mock2
 .method('doThat')
 .expect(times(2))
 .withArguments(...);

Make refactoring easier

● Improved quality

● Less bugs

● More stability

● Easier refactoring

Better testing strategy

Better testing strategy: Key benefits

Rewrite everything?!

Old system = old bugs

New system = new bugs

Rewrite might be necessary (like termination of Adobe Flash)

…but usually it’s not

Pros and cons of rewrites

"The project management was not
pleased. (...) two programmers had
spent two days doing work that added
nothing to the many features the
system had to deliver in a few months'
time. The old code had worked just fine.
Yes, the design was a bit more "pure"
and a bit more "clean." But the project
had to ship code that worked, not code
that would please an academic. (...)
Six months later, the project failed."

Pros and cons of rewrites

● Writing tests

Strategies for legacy code

● Writing tests

● Refactoring step by step

Strategies for legacy code

● Writing tests

● Refactoring step by step

● Event Storming

Strategies for legacy code

● Writing tests

● Refactoring step by step

● Event Storming

● Facade

● Strangler Pattern

● Anti-Corruption Layer

Strategies for legacy code

Strategies for legacy code

Action Cost Expected
benefit

Rewrite the shopping cart XL M

Refactor user registration L L

Optimize SQL for listing products M L

Strategies for legacy code

Action Cost Expected
benefit

Rewrite the shopping cart XL M

Refactor user registration L L

Optimize SQL for listing products M L

● Save project from missing deadlines and failure

● Preserve the existing behavior of a system

● More time for important things

Refactoring strategy: Key benefits

● Save project from missing deadlines and failure

● Preserve the existing behavior of a system

● More time for important things

● Small step improvements are visible quickly

● Dopamine shots, avoid burnout

● Small gains accrued give big wins

Refactoring strategy: Key benefits

We must have Scrum…?

Sprints can make people stressed because they believe that:

● They must do all the planned work
● They must not change the scope of the sprint

Wrong!

Nervous Scrum?

New tools for Retrospectives

More color post-its

Better estimates

More bureaucracy

“Fixing” Scrum

Commitment

Focus

Openness

Respect

Courage

https://scrumguides.org/scrum-guide.html#scrum-values

Scrum values: start from there!

https://www.strategypunk.com/leadership-5-dysfunctions-of-a-team-powerpoint-template/

Five dysfunctions of a team

● Team Canvas

● 1 on 1

● “How-to” for other teams

● Invite other teams for your Sprint Review

Improving team performance

● Team Canvas

● 1 on 1

● “How-to” for other teams

● Invite other teams for your Sprint Review

● Conway’s Law

Improving team performance

● Team Canvas

● 1 on 1

● “How-to” for other teams

● Invite other teams for your Sprint Review

● Conway’s Law

● Extreme Ownership

Improving team performance

● Team Canvas

● 1 on 1

● “How-to” for other teams

● Invite other teams for your Sprint Review

● Conway’s Law

● Extreme Ownership

● Scrum alternatives (Kanban, Fast Agile)

Improving team performance

● Improve the company culture

● Reduce stress

● Align around common goals

● Practice soft skills

● Better systems architecture

Key benefits

Meetings are a waste of time…?

“Ok, let’s get back to work”

“Ok, let’s get back to work”

“This could have been an email”

Development is
teamwork

You need to work together,
but also respect each other’s time

Improving meetings

● A meeting should have an agenda

● Do we need everyone on this call?

● Don't be afraid to reject a meeting

Improving meetings

● A meeting should have an agenda

● Do we need everyone on this call?

● Don't be afraid to reject a meeting

● Moderation, getting to the point

● Timeboxing

● Focus (avoid distraction)

Improving meetings

● A meeting should have an agenda

● Do we need everyone on this call?

● Don't be afraid to reject a meeting

● Moderation, getting to the point

● Timeboxing

● Focus (avoid distraction)

● Meeting notes, action points

● Collaboration tools

Improving meetings

● Improve the company culture

● Reduce stress

● Better productivity

● Better alignment, more commitment

Improving meetings

Key benefits

Ticking all the boxes

● Years of experience

● AWS, BDD, DDD, TDD, ABC, XYZ

● Tons of fancy keywords

● Gimmicks

Result: Impostor syndrome

Average IT job offer

As a candidate

You don’t have
to tick all the boxes

You can’t expect people
to tick all the boxes

As a recruiter

Philosophers team

Everyone’s awesome at something different:

● Architecture

● Design

● Management

● Performance

● Security

● Scalability

● Testing

Diverse team

Diverse team

● Fight the impostor syndrome

● Build strong, cross-functional teams

● Better software quality

● Faster onboarding

● Reduce costs

Key benefits

Become a real pro
by focusing on the right things :)

Thank you!

hi@espeo.eu

